The Interaction Picture
The interaction picture (or Dirac picture) is a hybrid between the Schrödinger and Heisenberg pictures. In this picture both the operators and the state kets are time dependent. The time dependence is split between the kets and the operators - this is achieved by first splitting the Hamiltonian into two parts: an exactly soluble, well known part, and a less known, more messy "peturbation".
If we want to look at this splitting process, we can say that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{H=H}_{o}+V(t)}
.
So the operator in the Interaction Picture is defined as:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{A}_{H}=e^{\frac{i}{\hbar }Ht}A_{s}e^{\frac{-i}{\hbar }Ht}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{A}_{H}=e^{\frac{i}{\hbar }Ht}A_{s}e^{\frac{-i}{\hbar }Ht}}
(Pay attention that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_s} only depends on t when the operator has "explicit time dependence". For example, it dependents on an applied, external, time-varying electric field.)
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \to\!}
Equation of motion :
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{i}\hbar \frac{\partial }{\partial t}\left |{\alpha ,t} \right \rangle_{I}=-H_{o}e^{\frac{i}{\hbar }H_{o}t}\left |{\alpha ,t} \right \rangle_{S}+e^{\frac{i}{\hbar }H_{o}t}(H_{0}+V)\left |{\alpha ,t} \right \rangle_{S}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^{\frac{i}{\hbar }H_{o}t}Ve^{\frac{-i}{\hbar }H_{o}t}\text{ . }e^{\frac{i}{\hbar }H_{o}t}\left |{\alpha ,t} \right \rangle_{S}}
If we call firstpart "Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_{I}\!}
" and second part "Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left |{\alpha ,t} \right \rangle_{I}}
" ,
it turns out :
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{=}V_{I}\left |{\alpha ,t} \right \rangle_{I}}
so;
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{i}\hbar \frac{\partial }{\partial t}\left |{\alpha ,t} \right \rangle_{I}=V_{I}\left |{\alpha ,t} \right \rangle_{I}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dt}A_{I}(t)=\frac{1}{i\hbar }\left [{A_{I},H_{o}} \right ]+\frac{\partial A_{I}}{\partial t}}
and this equation of motion evolves with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_{o}\!}
.