Physical Basis of Quantum Mechanics
Schrödinger Equation
Operators, Eigenfunctions, and Symmetry
Motion in One Dimension
Discrete Eigenvalues and Bound States
Time Evolution and the Pictures of Quantum Mechanics
Angular Momentum
Central Forces
The Path Integral Formulation of Quantum Mechanics
Continuous Eigenvalues and Collision Theory
Consider
d d t < x p > = 1 i ℏ < [ x p , H ] > = 2 < p 2 > 2 m + 1 i ℏ < x p V − x V p > = 2 < p 2 > 2 m + 1 i ℏ ∫ − ∞ ∞ d x [ ψ ∗ x ℏ i ∂ ∂ x ( V ψ ) − x V ℏ i ∂ ∂ x ψ ] = 2 < p 2 > 2 m + < x ∂ V ∂ x > {\displaystyle {\begin{aligned}&{\frac {d}{dt}}<xp>\\&={\frac {1}{i\hbar }}<[xp,H]>\\&={\frac {2<p^{2}>}{2m}}+{\frac {1}{i\hbar }}<xpV-xVp>\\&={\frac {2<p^{2}>}{2m}}+{\frac {1}{i\hbar }}\int _{-\infty }^{\infty }dx[\psi ^{*}x{\frac {\hbar }{i}}{\frac {\partial }{\partial x}}(V\psi )-xV{\frac {\hbar }{i}}{\frac {\partial }{\partial x}}\psi ]\\&={\frac {2<p^{2}>}{2m}}+<x{\frac {\partial V}{\partial x}}>\end{aligned}}}
Taking time average at both sides, we have
< x p > t = T − < x p > t = 0 T = 2 1 T ∫ 0 T d t < p 2 2 m > − 1 T ∫ 0 T d t < x ∂ V ∂ x > {\displaystyle {\frac {<xp>_{t=T}-<xp>_{t=0}}{T}}=2{\frac {1}{T}}\int _{0}^{T}dt<{\frac {p^{2}}{2m}}>-{\frac {1}{T}}\int _{0}^{T}dt<x{\frac {\partial V}{\partial x}}>}
For T → ∞ , L H S → 0 {\displaystyle T\rightarrow \infty ,LHS\rightarrow 0} .
For stationary state, the expectation values are constant in time, so we arrive 2 < K E >=< x ∂ V ∂ x > {\displaystyle 2<KE>=<x{\frac {\partial V}{\partial x}}>} , which is known as the Virial Theorem.
In 3D, it is modified to
2 < K E >=< r ⋅ ∇ V >= − < r ⋅ F > {\displaystyle 2<KE>=<\mathbf {r} \cdot \nabla V>=-<\mathbf {r} \cdot \mathbf {F} >} .