Charged Particles in an Electromagnetic Field

From PhyWiki
Jump to navigation Jump to search
Quantum Mechanics A
SchrodEq.png
Schrödinger Equation
The most fundamental equation of quantum mechanics; given a Hamiltonian Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{H}} , it describes how a state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\Psi\rangle} evolves in time.
Basic Concepts and Theory of Motion
UV Catastrophe (Black-Body Radiation)
Photoelectric Effect
Stability of Matter
Double Slit Experiment
Stern-Gerlach Experiment
The Principle of Complementarity
The Correspondence Principle
The Philosophy of Quantum Theory
Brief Derivation of Schrödinger Equation
Relation Between the Wave Function and Probability Density
Stationary States
Heisenberg Uncertainty Principle
Some Consequences of the Uncertainty Principle
Linear Vector Spaces and Operators
Commutation Relations and Simultaneous Eigenvalues
The Schrödinger Equation in Dirac Notation
Transformations of Operators and Symmetry
Time Evolution of Expectation Values and Ehrenfest's Theorem
One-Dimensional Bound States
Oscillation Theorem
The Dirac Delta Function Potential
Scattering States, Transmission and Reflection
Motion in a Periodic Potential
Summary of One-Dimensional Systems
Harmonic Oscillator Spectrum and Eigenstates
Analytical Method for Solving the Simple Harmonic Oscillator
Coherent States
Charged Particles in an Electromagnetic Field
WKB Approximation
The Heisenberg Picture: Equations of Motion for Operators
The Interaction Picture
The Virial Theorem
Commutation Relations
Angular Momentum as a Generator of Rotations in 3D
Spherical Coordinates
Eigenvalue Quantization
Orbital Angular Momentum Eigenfunctions
General Formalism
Free Particle in Spherical Coordinates
Spherical Well
Isotropic Harmonic Oscillator
Hydrogen Atom
WKB in Spherical Coordinates
Feynman Path Integrals
The Free-Particle Propagator
Propagator for the Harmonic Oscillator
Differential Cross Section and the Green's Function Formulation of Scattering
Central Potential Scattering and Phase Shifts
Coulomb Potential Scattering

Gauge

Gauge theory is a type of field theory in which the Lagrangian is invariant under a certain continuous group of local transformations.

Given a distribution of charges and current, and appropriate boundary conditions, the electromagnetic field is unique. However, the electromagnetic potential Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A^{\mu}\!} is not unique. The Maxwell equations can be expressed by electromagnetic field tensor Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F^{\mu\nu} \!} , which is defined by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F^{\mu\nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu} } .

If we set

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A'^{\mu}=A^{\mu}+\partial^{\mu}\chi } ,

then

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} F'^{\mu \nu } &= \partial ^\mu A'^\nu - \partial ^\nu A'^\mu \\ &= \partial^{\mu}(A^{\nu}+\partial^{nu}\chi)-\partial^{\nu}(A^{\mu}+\partial^{\mu}\chi) \\ &= \partial^{\mu}A^{\nu}-\partial^{\nu}A^{\mu}+(\partial^{\mu}\partial^{\nu}-\partial^{\nu}\partial^{\mu})\chi \\ &= F^{\mu \nu } \end{align} } ,

eg. the form of Maxwell equations will not change. So, we have a freedom Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \partial\chi \!} , which is called Gauge Freedom here.

For the magnetic field case, we can check for gauge invariance:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \left. \frac{{(p - \frac{e}{c}A - \partial \chi )^2 }}{{2m}}\right|\varphi \right\rangle = E|\varphi \rangle } ,

Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\varphi \rangle = e^{\frac{i}{\hbar }\frac{e}{c}\chi } |\phi \rangle } ,

the form Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{{(p - \frac{e}{c}A)^2 }}{{2m}}|\phi \rangle = E|\phi \rangle } will not change.

Usually, we use two gauges in magnetic field. One is the Laudau Gauge: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(r) = ( - yB,0,0)\!} , the other is the Symmetric Gauge: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(r) = \frac{1}{2}( - yB,xB,0)\!} .

We choose Laudau Gauge in the following calculation.

Motion in electromagnetic field

The Hamiltonian of a particle of charge Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e\!} and mass Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m\!} in an external electromagnetic field, which may be time-dependent, is given as follows:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H=\frac{1}{2m}\left(\mathbf{p}-\frac{e}{c}\bold A(\bold r,t)\right)^2+e\phi(\bold r,t)}


where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold{A(\bold r,t)} \!} is the vector potential and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\phi(\bold r,t)}\!} is the Coulomb potential of the electromagnetic field. In a problem, if there is a momentum operator Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold p\!} , it must be replaced by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right)}

if a particle is under the influence of an electromagnetic field.

Let's find out the Heisenberg equations of motion for the position and velocity operators. For position operatorFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold r\!} , we have:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{d\bold r}{dt} &= \frac{1}{i\hbar} \left[\bold r,H \right] \\ &= \frac{1}{i\hbar} \left[ \bold r, \frac{1}{2m} \left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right)^2 + e\phi(\bold r,t)\right] \\ &= \frac{1}{2im\hbar} \left[\bold r, \left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right)^2\right] \\ &= \frac{1}{2im\hbar} \left[\bold r, \left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right)\right]\left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right) + \frac{1}{2im\hbar} \left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right) \left[\bold r, \left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right)\right] \\ &= \frac{1}{2im\hbar} \left[\bold r, \bold p\right] \left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right) + \frac{1}{2im\hbar} \left(\bold p - \frac{e}{c}\bold A(\bold r,t)\right) \left[\bold r, \bold p\right] \\ &= \frac{1}{2im\hbar}i\hbar \left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right) + \frac{1}{2im\hbar} \left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right)i\hbar \\ &= \frac{1}{m}\left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right), \end{align} }

where (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold r \!} does not depend on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t \!} explicitly) is the equation of motion for the position operator Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold r} . This equation also defines the velocity operator Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold v} :

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold v= \frac {1}{m}\left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right)}

The Hamiltonian can be rewritten as:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H=\frac {m}{2}\bold v \cdot \bold v+e\phi}

Therefore, the Heisenberg equation of motion for the velocity operator is:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{d\bold v}{dt} &=\frac {1}{i\hbar}\left[\bold v,H\right]+\frac{\partial \bold v}{\partial t} \\ &= \frac {1}{i\hbar}\left[\bold v,\frac{m}{2}\bold v \cdot \bold v\right]+\frac {1}{i\hbar}\left[\bold v,e\phi\right]-\frac{e}{mc} \frac{\partial \bold A}{\partial t} \end{align} }

(Note that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold p\!} does not depend on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t\!} expicitly)

Let's use the following commutator identity:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left[\bold v,\bold v \cdot \bold v\right]=\bold v \times \left(\bold v \times \bold v\right)-\left(\bold v \times \bold v\right) \times \bold v }

Substituting, we get:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d\bold v}{dt} = \frac{1}{i\hbar} \frac{m}{2} \left(\bold v \times (\bold v \times \bold v) - (\bold v \times \bold v) \times \bold v \right) + \frac{1}{i\hbar} e[\bold v,\phi] - \frac{e}{mc} \frac{\partial \bold A}{\partial t}}

Now let's evaluate Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold v \times \bold v \!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [\bold v,\phi] \!} :

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} (\bold v \times \bold v)_i &= \epsilon_{ijk} v_j v_k \\ &= \epsilon_{ijk}\frac{1}{m} \left(p_j-\frac{e}{c}A_j(\bold r,t)\right) \frac{1}{m}\left(p_k-\frac{e}{c}A_k(\bold r,t)\right) \\ &= -\frac{e}{m^2c} \epsilon_{ijk}\left(p_j A_k(\bold r,t) + A_j(\bold r,t)p_k\right) \\ &= -\frac{e}{m^2c}\epsilon_{ijk}p_jA_k(\bold r,t) - \frac{e}{m^2c} \epsilon_{ijk} A_j(\bold r,t) p_k \\ &= -\frac{e}{m^2c}\epsilon_{ijk} p_j A_k(\bold r,t)-\frac{e}{m^2c} \epsilon_{ikj} A_k(\bold r,t) p_j \mbox{(Switching indices in the second terms)} \\ &= -\frac{e}{m^2c}\epsilon_{ijk} p_j A_k(\bold r,t) + \frac{e}{m^2c} \epsilon_{ijk} A_k(\bold r,t) p_j \\ &= -\frac{e}{m^2c}\epsilon_{ijk}\left[p_j,A_k(\bold r,t)\right] \\ &= -\frac{e}{m^2c}\epsilon_{ijk}\frac{\hbar}{i} \nabla_j A_k(\bold r,t) \\ &= i\hbar\frac{e}{m^2c}\left(\nabla \times \bold A\right)_i \end{align} }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rightarrow \left[\bold v \times \bold v\right]=i\hbar\frac{e}{m^2c}\left(\nabla \times \bold A\right) = i\hbar\frac{e}{m^2c}\bold B }

and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \left[\bold v,\phi\right] &= \frac{1}{m} \left[\bold p-\frac{e}{c}\bold A(\bold r, t),\phi(\bold r,t)\right] \\ &= \frac{1}{m} \left[\bold p,\phi(\bold r,t) \right] \\ &= \frac{1}{m} \frac{\hbar}{i}\nabla\phi \end{align} }

Substituting and rearranging, we get:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m\frac{d\bold v}{dt} = \frac{e}{2c} \left(\bold v \times \bold B-\bold B \times \bold v \right) + e\bold E }

where

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold E = -\nabla \phi - \frac{1}{c} \frac{\partial \bold A}{\partial t} }

Above is the quantum mechanical version of the equation for the acceleration of the particle in terms of the Lorentz force.

These results can also be deduced in Hamiltonian dynamics due to the similarity between the Hamiltonian dynamics and quantum mechanics.

Problems about Motion in electromagnetic field

Problem 1

Problem 2