Differential Cross Section and the Green's Function Formulation of Scattering
Much of what we know about forces and interactions in atoms and nuclei has been learned from scattering experiments, in which say atoms in the target are bombarded with beams of particles. These particles are scattered by the target atoms and then detected as a function of a scattering angle and energy. From theoretical point of view, we are now concerned with the continuous part of the energy spectrum. We are free to choose the value of the incident particle energy and by a proper choice of the zero of energy, this corresponds to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E>0\!} an to eigenfunctions of the unbound states. Before, when we were studying the bound states, the focus was on the discrete energy eigenvalues which allow a direct comparison of theory and experiments. In the continuous part of the spectrum, as it comes into play in scattering, the energy is given by the incident beam, and intensities are the object of measurement and prediction. These being the measures of the likelihood of finding a particle at certain places, are of course related to the eigenfunctions, rather than eigenvalues. Relating observed intensities to calculated wave functions is the first problem in scattering theory.
Figure 1: Collimated homogeneous beam of monoenergetic particles, long wavepacket which is approximately a planewave, but strictly does not extend to infinity in all directions, is incident on a target and subsequently scattered into the detector subtending a solid angle Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d\Omega\!} . The detector is assumed to be far away from the scattering center.
If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I_0\!} is the number of particles incident from the left per unit area per time and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I(\theta,\phi)d\Omega\!} the number of those scattered into the cone per time and if the density of particles in the incident beam is so small such that we can neglect the interaction of the particles with each other and consider their collisions like independent events then this two quantities are proportional to each other. With these considerations the differential cross section is defined as:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d\sigma}{d\Omega}=\frac{I(\theta,\phi)}{I_0}}
There exist two different types of scattering; elastic scattering, where the incident energy is equal to the detected energy and inelastic scattering which arises from lattice vibrations within the sample. For inelastic scattering, one would need to tune the detector detect Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E+dE\!} where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dE\!} results from the quantum lattice vibrations. For simplification purposes, we will only be discussing elastic scattering.
To describe this scattering, start with the stationary Schrödinger equation:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(-\frac{\hbar^2}{2m}\nabla^2+V(\mathbf r)\right)\psi(\mathbf r)=E\psi(\mathbf r)}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Rightarrow (\nabla^2+k^2)\psi(\mathbf r)=\frac{2mV(\mathbf r)}{\hbar^2}\psi(\mathbf r)}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E=\frac{\hbar^2k^2}{2m}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(\mathbf r)\!} will be assumed to be finite in a limited region of space Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r<d\!} . This is called the range of the force, e.g. nuclear forces Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d\sim10^{-15}m\!} and atomic forces Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d\sim10^{-10}m\!} . Outside this range of forces, the particles move essentially freely. Our problem consists in finding those solutions of the above differential equation which can be written as a superposition of an incoming and an outgoing scattered waves. We found such solutions by writing the Schrödinger differential equation as an integral equation:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_k(\mathbf r)=\psi_k^{(0)}( \mathbf r ) +\int d^3r'G_k(\mathbf r,\mathbf r')\frac{2m}{\hbar^2}V(\mathbf r')\psi_k(\mathbf r')}
where the Green's function satisfies
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\nabla^2+k^2)G_k(\mathbf{r},\mathbf{r'})=\delta(\mathbf{r}-\mathbf{r'})}
and
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\nabla^2+k^2 )\psi^{(0)}_k(\mathbf{r})=0}
and the solution is chosen such that the second term in the above wave function corresponds to an outgoing wave. Then, the outgoing Green's function can be written as
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G_{k}(\mathbf r,\mathbf r')=-\frac{1}{4\pi}\frac{e^{ik|\mathbf{r}-\mathbf{r}'|}}{|\mathbf{r}-\mathbf{r}'|}.}
The full wave function solution will become an integral equation
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi _{k}(\mathbf{r})=\psi _{k}^{(0)}(\mathbf{r})-\frac{m}{2\pi \hbar ^{2}}\int {d^{3}r}' \text{ }\frac{e^{ik\left|\mathbf{r}-\mathbf{r}' \right |}}{\left |{\mathbf{r-r'}} \right |}V(\mathbf{r'})\psi _{k}(\mathbf{r'}),}
where the first term represents incident plane waves and the second term represents scattered waves.
The detector is located far away from the scattering potential and we need to discuss the asymptotic behaviour in the limit of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r\to\infty\!} . In this limit,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k \left| \mathbf{r}-\mathbf{r}'\right| \sim kr - k\mathbf{r}' \cdot \mathbf{\hat{r}} = kr - \mathbf{k}' \cdot \mathbf{r}', }
where the wave vector, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{k}' = k \mathbf{\hat{r}} } , is seen far from the scattering potential.
Therefore we can write
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \lim_{r \to \infty} \psi_k(\mathbf{r}) &= \psi_k^{(0)}(\mathbf{r}) -\frac{m}{2\pi\hbar^2 }\int d^3 r'e^ {-i\mathbf{k}'\cdot\mathbf{r'}}V(\mathbf{r'})\psi_k(\mathbf{r'})\frac{e^{ikr}}{r} \\ &= \psi_k^{(0)}(\mathbf{r})+f_k(\theta,\phi)\frac{e^{ikr}}{r}, \end{align} }
where the scattering amplitude
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_k(\theta,\phi)=-\frac{m}{2\pi\hbar^2 }\int d^3 r'e^{-i\mathbf{k}'\cdot\mathbf{r'}}V(\mathbf{r'})\psi_k(\mathbf{r'}) }
and the angles Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta\!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi\!} are the angles between Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{\hat{r}}\!} (the vector defining the detector) and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{k}\!} (the vector defining the in the incoming waves).
Now the differential cross section is written through the ratio of the (outgoing) radial current density Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_r\!} and the incident current density Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_{inc}\!} as
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d\sigma}{d\Omega}=\frac{j_r r^2}{j_{inc}}}
The radial current is
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_r=\frac{\hbar}{2mi}\left(\psi_{sc}^*\frac{\partial \psi_{sc}}{\partial r}-\psi_{sc}\frac{\partial \psi_{sc}^*}{\partial r}\right)=\frac{\hbar k}{mr^2}|f_k(\theta,\phi)|^2}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Rightarrow \frac{d\sigma}{d\Omega}=|f_k(\theta,\phi)|^2}
For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(\mathbf{r})} that is small, the full wave function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi_k(\mathbf{r})\rangle } can be obtained by substituting Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi_k(\mathbf{r})\rangle } into RHS of the integral equation iteratively as:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \psi_k(\mathbf{r}) =\psi_k^{(0)}(\mathbf{r}) + \left(\frac{2m}{\hbar^2}\right) \int d^3r'G_k(\mathbf r,\mathbf r')V(\mathbf{r'})\psi_k^{(0)}(\mathbf{r'}) \\ + \left(\frac{2m}{\hbar^2}\right)^{2} \int d^3r' \int d^3r'' G_k(\mathbf r,\mathbf r') & V(\mathbf{r'}) G_k(\mathbf r',\mathbf r'')V(\mathbf{r''}) \psi_k^{(0)}(\mathbf{r''})+... \end{align} }
In 1st Born approximation, we keep only one Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(\mathbf{r})} term. For large Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r\!} we have
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_k(\mathbf{r})\approx\psi_k^{(0)}(\mathbf{r}) -\frac{m}{2\pi\hbar^2 }\int d^3r'e^{-i\mathbf{k}'\cdot\mathbf{r'}}V(\mathbf{r'})\psi_k^{(0)}(\mathbf{r'})\frac{e^{ikr}}{r}}
and
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_k(\theta,\phi)=-\frac{m}{2\pi\hbar^2 }\int d^3r'e^{-i\mathbf{k}'\cdot\mathbf{r'}}V(\mathbf{r'})e^{i\mathbf{k}\cdot \mathbf r'}=-\left(\frac{m}{2\pi\hbar^2}\right)|\langle\mathbf k_{sc}|V|\mathbf k_{inc}\rangle|}
For a central-force potential, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(r) } , the Born scattering amplitude reduces to
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_k(\theta) = \frac{-m}{2 \pi \hbar^2}\int d^3r'V(r') e^{-i\mathbf q \mathbf r'} }
where
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf q = \mathbf k' - \mathbf k }
is known as the momentum transfer (in units of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hbar } ). Keep in mind that k' is the wave vector pointing in the incident direction and k is in the scattered direction.
For spherically symetric potintials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(\mathbf r) = V(r) } , so that all the angular dependence is carried by q. The integral over the solid angle is easily carried out and yields the following result:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_{born}(\theta) = \frac{-2m}{\hbar^2} \int_0^\infin dr' V(r') \frac{\sin(qr')}{qr'} {r'}^2 }
Here we have denoted the scattering angle between Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k } and by , and note that for elastic scattering, so that
- .
As an example, consider the screened Coulomb potential
In the Born approximation , after a simple integration over the angles, we find
The differential scattering cross section is obtained simply by taking the square of this amplitude.
The Coulomb potential between two charges and is a limiting case of the potential
for and with . Thus, in the Born approximation,
Note, that the exact Coulomb scattering amplitude differs from the Born amplitude by a phase factor.