Harmonic Oscillator: Integration Over Fluctuations

From PhyWiki
Revision as of 15:41, 15 February 2013 by RobertThrockmorton (talk | contribs) (moved Harmonic fluctuations to Harmonic Fluctuations: Correct capitalization of title)
Jump to navigation Jump to search
Quantum Mechanics A
SchrodEq.png
Schrödinger Equation
The most fundamental equation of quantum mechanics; given a Hamiltonian Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{H}} , it describes how a state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\Psi\rangle} evolves in time.
Basic Concepts and Theory of Motion
UV Catastrophe (Black-Body Radiation)
Photoelectric Effect
Stability of Matter
Double Slit Experiment
Stern-Gerlach Experiment
The Principle of Complementarity
The Correspondence Principle
The Philosophy of Quantum Theory
Brief Derivation of Schrödinger Equation
Relation Between the Wave Function and Probability Density
Stationary States
Heisenberg Uncertainty Principle
Some Consequences of the Uncertainty Principle
Linear Vector Spaces and Operators
Commutation Relations and Simultaneous Eigenvalues
The Schrödinger Equation in Dirac Notation
Transformations of Operators and Symmetry
Time Evolution of Expectation Values and Ehrenfest's Theorem
One-Dimensional Bound States
Oscillation Theorem
The Dirac Delta Function Potential
Scattering States, Transmission and Reflection
Motion in a Periodic Potential
Summary of One-Dimensional Systems
Harmonic Oscillator Spectrum and Eigenstates
Analytical Method for Solving the Simple Harmonic Oscillator
Coherent States
Charged Particles in an Electromagnetic Field
WKB Approximation
The Heisenberg Picture: Equations of Motion for Operators
The Interaction Picture
The Virial Theorem
Commutation Relations
Angular Momentum as a Generator of Rotations in 3D
Spherical Coordinates
Eigenvalue Quantization
Orbital Angular Momentum Eigenfunctions
General Formalism
Free Particle in Spherical Coordinates
Spherical Well
Isotropic Harmonic Oscillator
Hydrogen Atom
WKB in Spherical Coordinates
Feynman Path Integrals
The Free-Particle Propagator
Propagator for the Harmonic Oscillator
Differential Cross Section and the Green's Function Formulation of Scattering
Central Potential Scattering and Phase Shifts
Coulomb Potential Scattering

Now, let's evaluate the path integral: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A=A(t)=\int_{y(0)=0}^{y(t)=0}D[y(t')]e^{\frac{i}{\hbar}\int_{0}^{t}(\frac{1}{2}my'^2-\frac{1}{2}ky^2)dt'}}

Note that the integrand is taken over all possible trajectory starting at point Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0} at time Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t'=0} , ending at point Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} at time Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t'=t} .

Expanding this integral,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(t)=\left(\frac{m}{2\pi i \hbar}\right)^{\frac{N}{2}}\int_{-\infty}^{\infty} dy_1\ldots dy_{N-1} e^{\left[\frac{i}{\hbar}\left(\frac{m}{2\Delta t}y^2_{N-1}- \frac{\Delta t}{2}ky^2_{N-1}\right)\right]}e^{\left[\frac{i}{\hbar}\left(\frac{m}{2\Delta t}(y_{N-1}-y_{N-2})^2- \frac{\Delta t}{2}ky^2_{N-2}\right)\right]}\ldots e^{\left[\frac{i}{\hbar}\left(\frac{m}{2\Delta t}y^2_{1}- \frac{\Delta t}{2}ky^2_{1}\right)\right]} }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N\Delta t=t\!} .

Expanding the path trajectory in Fourier series, we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y(t')=\sum_n a_n \sin\left(\frac{n\pi t'}{t}\right) }

we may express Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(t)\!} in the form

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(t)=C\int_{-\infty}^{\infty} da_1\ldots da_{N-1} \exp{\left[\sum_{n=1}^{N-1}\frac{im}{2\hbar}\left(\left(\frac{n\pi}{t}\right)^2- \omega^2\right)a^2_n\right]} }

where C is a constant independent of the frequency which comes from the Jacobian of the transformation. The important point is that it does not depend on the frequency Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega\!} . Thus, evaluating the integral of,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(t)=C'\prod_{n=1}^{N-1}\left[\left(\frac{n\pi}{t}\right)^2-\omega^2\right]^{-\frac{1}{2}}= C'\prod_{n=1}^{N-1}\left[\left(\frac{n\pi}{t}\right)^2\right]^{-\frac{1}{2}} \prod_{n=1}^{N-1}\left[1-\left(\frac{\omega t}{n\pi}\right)^2\right]^{-\frac{1}{2}} }

where C' is a constant directly related to C and still independent of the frequency of motion. Since the first product series in this final expression is also independent of the frequency of motion, we can absorb it into our constant C' to have a new constant, C. Simplifying further,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(t)=C''\sqrt{\frac{\omega t}{\sin(\omega t)}} }

In the limit Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega\rightarrow 0} , we already know that

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C''=\sqrt{\frac{m}{2\pi i \hbar t}} }

Thus,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(t)=\sqrt{\frac{m}{2\pi i \hbar t}}\sqrt{\frac{\omega t}{\sin(\omega t)}}= \sqrt{\frac{m}{2\pi i \hbar \sin(\omega t)}} }

and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle <x|\hat{U}(t,0)|x_0>=\sqrt{\frac{m}{2\pi i \hbar \sin(\omega t)}} e^{\frac{i}{\hbar}\left(\frac{m\omega}{2sin(\omega t)}((x^2+x_0^2)cos(\omega t)-2xx_0)\right)} }

Reference

For a more detailed evaluation of this problem, please see Barone, F. A.; Boschi-Filho, H.; Farina, C. 2002. "Three methods for calculating the Feynman propagator". American Association of Physics Teachers, 2003. Am. J. Phys. 71 (5), May 2003. pp 483-491.