Charged Particles in an Electromagnetic Field
A problem with some relation to the harmonic oscillator is that of the motion of a charged particle in a constant and uniform magnetic field. In classical mechanics, we know that the Hamiltonian for this system is
where is the charge of the particle and is the vector potential. In fact, to obtain the Hamiltonian for any system in the presence of a magnetic field, we simply make the replacement, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{p}\rightarrow\mathbf{p}-\frac{e}{c}\mathbf{A}.} In quantum mechanics, we introduce the magnetic field in the same way; this process is referred to as minimal coupling.
Gauge Invariance in Quantum Mechanics
We know from Maxwell's equations that the classical physics of a charged particle in an electromagnetic field is invariant under a gauge transformation, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi\rightarrow\Phi-\frac{1}{c}\frac{\partial\chi}{\partial t}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{A}\rightarrow\mathbf{A}+\nabla\chi,} where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi\!} is the scalar potential and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi(\mathbf{r},t)\!} is a single-valued real function. We will now show how this is expressed in quantum mechanics.
In the position basis, the Schrödinger equation for a charged particle in an electromagnetic field is
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -i\hbar\frac{\partial\Psi}{\partial t}-e\Phi\Psi=-\frac{\hbar^2}{2m}\left (\nabla+\frac{ie}{\hbar c}\mathbf{A}\right )^2\Psi.}
If we now perform the above gauge transformation on the electromagnetic field, then this equation becomes
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -i\hbar\frac{\partial\Psi}{\partial t}-e\Phi\Psi+\frac{e}{c}\frac{\partial\chi}{\partial t}\Psi-\frac{\hbar^2}{2m}\left (\nabla+\frac{ie}{\hbar c}\mathbf{A}+\frac{ie}{\hbar c}\nabla\chi\right )^2\Psi.}
If we make the substitution, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Psi\rightarrow e^{-ie\chi/\hbar c}\Psi,} then we recover the original equation. Therefore, a gauge transformation of the magnetic field effectively introduces a phase factor to the wave function. This does result in a change in the canonical momentum, but it will have no effect on, for example, the probability density for finding the particle at a given position or, as we will see later, on the expectation value of the position or velocity of the particle.
We see that, in quantum mechanics, gauge invariance is expressed as follows. If one introduces a single-valued phase factor into the wave function, then it induces a corresponding change in the electromagnetic potentials that the particle is subject to.
For a constant and uniform magnetic field Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{B}=B\hat{\mathbf{z}},} we typically work with one of two gauges. One of these is the Laudau gauge,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{A}(\mathbf{r}) = -yB\hat{\mathbf{x}}} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle xB\hat{\mathbf{y}}.}
The other is the symmetric gauge,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{A}(\mathbf{r})=-\tfrac{1}{2}yB\hat{\mathbf{x}}+\tfrac{1}{2}xB\hat{\mathbf{y}}.}
Motion in electromagnetic field
The Hamiltonian of a particle of charge Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e\!} and mass Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m\!} in an external electromagnetic field, which may be time-dependent, is given as follows:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H=\frac{1}{2m}\left(\mathbf{p}-\frac{e}{c}\bold A(\bold r,t)\right)^2+e\phi(\bold r,t)}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold{A(\bold r,t)} \!}
is the vector potential and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\phi(\bold r,t)}\!}
is the Coulomb potential of the electromagnetic field. In a problem, if there is a momentum operator Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold p\!}
, it must be replaced by
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right)}
if a particle is under the influence of an electromagnetic field.
Let's find out the Heisenberg equations of motion for the position and velocity operators. For position operatorFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold r\!} , we have:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{d\bold r}{dt} &= \frac{1}{i\hbar} \left[\bold r,H \right] \\ &= \frac{1}{i\hbar} \left[ \bold r, \frac{1}{2m} \left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right)^2 + e\phi(\bold r,t)\right] \\ &= \frac{1}{2im\hbar} \left[\bold r, \left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right)^2\right] \\ &= \frac{1}{2im\hbar} \left[\bold r, \left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right)\right]\left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right) + \frac{1}{2im\hbar} \left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right) \left[\bold r, \left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right)\right] \\ &= \frac{1}{2im\hbar} \left[\bold r, \bold p\right] \left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right) + \frac{1}{2im\hbar} \left(\bold p - \frac{e}{c}\bold A(\bold r,t)\right) \left[\bold r, \bold p\right] \\ &= \frac{1}{2im\hbar}i\hbar \left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right) + \frac{1}{2im\hbar} \left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right)i\hbar \\ &= \frac{1}{m}\left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right), \end{align} }
where (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold r \!} does not depend on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t \!} explicitly) is the equation of motion for the position operator Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold r} . This equation also defines the velocity operator Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold v} :
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold v= \frac {1}{m}\left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right)}
The Hamiltonian can be rewritten as:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H=\frac {m}{2}\bold v \cdot \bold v+e\phi}
Therefore, the Heisenberg equation of motion for the velocity operator is:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{d\bold v}{dt} &=\frac {1}{i\hbar}\left[\bold v,H\right]+\frac{\partial \bold v}{\partial t} \\ &= \frac {1}{i\hbar}\left[\bold v,\frac{m}{2}\bold v \cdot \bold v\right]+\frac {1}{i\hbar}\left[\bold v,e\phi\right]-\frac{e}{mc} \frac{\partial \bold A}{\partial t} \end{align} }
(Note that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold p\!} does not depend on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t\!} expicitly)
Let's use the following commutator identity:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left[\bold v,\bold v \cdot \bold v\right]=\bold v \times \left(\bold v \times \bold v\right)-\left(\bold v \times \bold v\right) \times \bold v }
Substituting, we get:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d\bold v}{dt} = \frac{1}{i\hbar} \frac{m}{2} \left(\bold v \times (\bold v \times \bold v) - (\bold v \times \bold v) \times \bold v \right) + \frac{1}{i\hbar} e[\bold v,\phi] - \frac{e}{mc} \frac{\partial \bold A}{\partial t}}
Now let's evaluate Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold v \times \bold v \!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [\bold v,\phi] \!} :
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} (\bold v \times \bold v)_i &= \epsilon_{ijk} v_j v_k \\ &= \epsilon_{ijk}\frac{1}{m} \left(p_j-\frac{e}{c}A_j(\bold r,t)\right) \frac{1}{m}\left(p_k-\frac{e}{c}A_k(\bold r,t)\right) \\ &= -\frac{e}{m^2c} \epsilon_{ijk}\left(p_j A_k(\bold r,t) + A_j(\bold r,t)p_k\right) \\ &= -\frac{e}{m^2c}\epsilon_{ijk}p_jA_k(\bold r,t) - \frac{e}{m^2c} \epsilon_{ijk} A_j(\bold r,t) p_k \\ &= -\frac{e}{m^2c}\epsilon_{ijk} p_j A_k(\bold r,t)-\frac{e}{m^2c} \epsilon_{ikj} A_k(\bold r,t) p_j \mbox{(Switching indices in the second terms)} \\ &= -\frac{e}{m^2c}\epsilon_{ijk} p_j A_k(\bold r,t) + \frac{e}{m^2c} \epsilon_{ijk} A_k(\bold r,t) p_j \\ &= -\frac{e}{m^2c}\epsilon_{ijk}\left[p_j,A_k(\bold r,t)\right] \\ &= -\frac{e}{m^2c}\epsilon_{ijk}\frac{\hbar}{i} \nabla_j A_k(\bold r,t) \\ &= i\hbar\frac{e}{m^2c}\left(\nabla \times \bold A\right)_i \end{align} }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rightarrow \left[\bold v \times \bold v\right]=i\hbar\frac{e}{m^2c}\left(\nabla \times \bold A\right) = i\hbar\frac{e}{m^2c}\bold B }
and
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \left[\bold v,\phi\right] &= \frac{1}{m} \left[\bold p-\frac{e}{c}\bold A(\bold r, t),\phi(\bold r,t)\right] \\ &= \frac{1}{m} \left[\bold p,\phi(\bold r,t) \right] \\ &= \frac{1}{m} \frac{\hbar}{i}\nabla\phi \end{align} }
Substituting and rearranging, we get:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m\frac{d\bold v}{dt} = \frac{e}{2c} \left(\bold v \times \bold B-\bold B \times \bold v \right) + e\bold E }
where
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold E = -\nabla \phi - \frac{1}{c} \frac{\partial \bold A}{\partial t} }
Above is the quantum mechanical version of the equation for the acceleration of the particle in terms of the Lorentz force.
These results can also be deduced in Hamiltonian dynamics due to the similarity between the Hamiltonian dynamics and quantum mechanics.