The Interaction Picture
The interaction, or Dirac, picture is a hybrid between the Schrödinger and Heisenberg pictures. In this picture, both the operators and the state vectors are time dependent; the time dependence is split between the vectors and the operators. This is achieved by splitting the Hamiltonian Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{H}} into two parts - an exactly solvable, or "bare", part Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{H}_0} and a "peturbation", Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{V}(t):}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{H}=\hat{H}_0+\hat{V}(t)}
Let us now take a solution Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\Psi(t)\rangle} of the Schrödinger equation for the full Hamiltonian and "factor out" the time dependence due to the "bare" part of the Hamiltonian:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\Psi(t)\rangle=e^{-i\hat{H}_0t/\hbar}|\Psi_I(t)\rangle}
In this way, we have defined the state vector Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\Psi_I(t)\rangle} in the interaction picture. If we substitute this into the Schrödinger equation, we find that this vector satisfies
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i\hbar\frac{d}{dt}|\Psi_I(t)\rangle=\hat{V}_I(t)|\Psi_I(t)\rangle,}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{V}_I(t)=e^{i\hat{H}_0t/\hbar}\hat{V}(t)e^{-i\hat{H}_0t/\hbar}} is the "perturbation" in the interaction picture. In other words, the time evolution of the state vector in the interaction picture is governed entirely by the "perturbation" part of the Hamiltonian.
We may see that the same relation between the "perturbation" in the interaction picture and the same in the Schrödinger picture is also satisfied by all operators. If we consider the expectation value of an operator, we may rewrite it in terms of the interaction picture state vectors as follows:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle\hat{A}\rangle(t)=\langle\Psi(t)|\hat{A}|\Psi(t)\rangle=\langle\Psi_I(t)|e^{i\hat{H}_0t/\hbar}\hat{A}e^{-i\hat{H}_0t/\hbar}|\Psi_I(t)\rangle}
Similarly to how we defined the Heisenberg picture operators, we may define the operator Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{A}_I(t)} in the interaction picture as
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{A}_I(t)=e^{i\hat{H}_0t/\hbar}\hat{A}e^{-i\hat{H}_0t/\hbar}.}
We therefore see that the time dependence of operators in the interaction picture is dictated entirely by the "bare" part of the Hamiltonian.
Equation of motion :
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{i}\hbar \frac{\partial }{\partial t}\left |{\alpha ,t} \right \rangle_{I}=-H_{o}e^{\frac{i}{\hbar }H_{o}t}\left |{\alpha ,t} \right \rangle_{S}+e^{\frac{i}{\hbar }H_{o}t}(H_{0}+V)\left |{\alpha ,t} \right \rangle_{S}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^{\frac{i}{\hbar }H_{o}t}Ve^{\frac{-i}{\hbar }H_{o}t}\text{ . }e^{\frac{i}{\hbar }H_{o}t}\left |{\alpha ,t} \right \rangle_{S}}
If we call firstpart "Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_{I}\!}
" and second part "Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left |{\alpha ,t} \right \rangle_{I}}
" ,
it turns out :
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{=}V_{I}\left |{\alpha ,t} \right \rangle_{I}}
so;
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{i}\hbar \frac{\partial }{\partial t}\left |{\alpha ,t} \right \rangle_{I}=V_{I}\left |{\alpha ,t} \right \rangle_{I}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dt}A_{I}(t)=\frac{1}{i\hbar }\left [{A_{I},H_{o}} \right ]+\frac{\partial A_{I}}{\partial t}}
and this equation of motion evolves with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_{o}\!}
.