Propagator for the Harmonic Oscillator

From PhyWiki
Jump to navigation Jump to search
Quantum Mechanics A
SchrodEq.png
Schrödinger Equation
The most fundamental equation of quantum mechanics; given a Hamiltonian , it describes how a state evolves in time.
Basic Concepts and Theory of Motion
UV Catastrophe (Black-Body Radiation)
Photoelectric Effect
Stability of Matter
Double Slit Experiment
Stern-Gerlach Experiment
The Principle of Complementarity
The Correspondence Principle
The Philosophy of Quantum Theory
Brief Derivation of Schrödinger Equation
Relation Between the Wave Function and Probability Density
Stationary States
Heisenberg Uncertainty Principle
Some Consequences of the Uncertainty Principle
Linear Vector Spaces and Operators
Commutation Relations and Simultaneous Eigenvalues
The Schrödinger Equation in Dirac Notation
Transformations of Operators and Symmetry
Time Evolution of Expectation Values and Ehrenfest's Theorem
One-Dimensional Bound States
Oscillation Theorem
The Dirac Delta Function Potential
Scattering States, Transmission and Reflection
Motion in a Periodic Potential
Summary of One-Dimensional Systems
Harmonic Oscillator Spectrum and Eigenstates
Analytical Method for Solving the Simple Harmonic Oscillator
Coherent States
Charged Particles in an Electromagnetic Field
WKB Approximation
The Heisenberg Picture: Equations of Motion for Operators
The Interaction Picture
The Virial Theorem
Commutation Relations
Angular Momentum as a Generator of Rotations in 3D
Spherical Coordinates
Eigenvalue Quantization
Orbital Angular Momentum Eigenfunctions
General Formalism
Free Particle in Spherical Coordinates
Spherical Well
Isotropic Harmonic Oscillator
Hydrogen Atom
WKB in Spherical Coordinates
Feynman Path Integrals
The Free-Particle Propagator
Propagator for the Harmonic Oscillator
Differential Cross Section and the Green's Function Formulation of Scattering
Central Potential Scattering and Phase Shifts
Coulomb Potential Scattering

We will now evaluate the propagator for the harmonic oscillator. The Lagrangian for this system is

Before we begin, let us prove that the propagator will separate into two factors; one of these comes entirely from the classical motion of the system, and the other comes entirely from quantum fluctuations about said trajectory. To this end, let us write where is the classical trajectory and is the fluctuation, which will be a new integration variable for the path integral. If we take and to be the initial and final times, respectively, then Substituting this into the action, we get

We now expand out the squares, obtaining

If we integrate by parts in the third term, we get

We know, however, that the classical motion obeys the equation, As a result, the third term is zero, and the action separates into two contributions, one coming entirely from the classical motion, and the other coming entirely from quantum fluctuations. Denoting these two contributions as

and

the propagator may now be written as

We will now evaluate each of these contributions.

Contribution from Classical Path

We will begin by evaluating the "classical" contribution to the propagator. This is essentially just a problem of classical mechanics; we begin by solving for the classical motion of the particle. The equation of motion is, as stated earlier,

We impose the boundary conditions, and The solution of the equation of motion that satisfies these boundary conditions is

and the corresponding velocity is

If we now substitute these expressions into the Lagrangian and simplify, we obtain

If we now substitute this into the action, we finally obtain

Contribution From Fluctuations

Now, let's evaluate the path integral:

Note that the integrand is taken over all possible trajectory starting at point at time , ending at point at time .

Expanding this integral,

where .

Expanding the path trajectory in Fourier series, we have

we may express in the form

where C is a constant independent of the frequency which comes from the Jacobian of the transformation. The important point is that it does not depend on the frequency . Thus, evaluating the integral of,

where C' is a constant directly related to C and still independent of the frequency of motion. Since the first product series in this final expression is also independent of the frequency of motion, we can absorb it into our constant C' to have a new constant, C. Simplifying further,

In the limit , we already know that

Thus,

and

Reference

Our evaluation of the "quantum" contribution to the propagator uses the method presented here: File:FeynmanHibbs H O Amplitude.pdf

For a more detailed evaluation of this problem, please see Barone, F. A.; Boschi-Filho, H.; Farina, C. 2002. "Three methods for calculating the Feynman propagator". American Association of Physics Teachers, 2003. Am. J. Phys. 71 (5), May 2003. pp 483-491.