Two particle scattering

From PhyWiki
Jump to navigation Jump to search
Quantum Mechanics A
SchrodEq.png
Schrödinger Equation
The most fundamental equation of quantum mechanics; given a Hamiltonian , it describes how a state evolves in time.
Basic Concepts and Theory of Motion
UV Catastrophe (Black-Body Radiation)
Photoelectric Effect
Stability of Matter
Double Slit Experiment
Stern-Gerlach Experiment
The Principle of Complementarity
The Correspondence Principle
The Philosophy of Quantum Theory
Brief Derivation of Schrödinger Equation
Relation Between the Wave Function and Probability Density
Stationary States
Heisenberg Uncertainty Principle
Some Consequences of the Uncertainty Principle
Linear Vector Spaces and Operators
Commutation Relations and Simultaneous Eigenvalues
The Schrödinger Equation in Dirac Notation
Transformations of Operators and Symmetry
Time Evolution of Expectation Values and Ehrenfest's Theorem
One-Dimensional Bound States
Oscillation Theorem
The Dirac Delta Function Potential
Scattering States, Transmission and Reflection
Motion in a Periodic Potential
Summary of One-Dimensional Systems
Harmonic Oscillator Spectrum and Eigenstates
Analytical Method for Solving the Simple Harmonic Oscillator
Coherent States
Charged Particles in an Electromagnetic Field
WKB Approximation
The Heisenberg Picture: Equations of Motion for Operators
The Interaction Picture
The Virial Theorem
Commutation Relations
Angular Momentum as a Generator of Rotations in 3D
Spherical Coordinates
Eigenvalue Quantization
Orbital Angular Momentum Eigenfunctions
General Formalism
Free Particle in Spherical Coordinates
Spherical Well
Isotropic Harmonic Oscillator
Hydrogen Atom
WKB in Spherical Coordinates
Feynman Path Integrals
The Free-Particle Propagator
Propagator for the Harmonic Oscillator
Differential Cross Section and the Green's Function Formulation of Scattering
Central Potential Scattering and Phase Shifts
Coulomb Potential Scattering
Particle scattering.jpg

Classically, if we wish to consider a collection of identical particles, say billiard balls, it is always possible to label all the balls such that we can follow a single ball throughout interacting with others. It is not, however, possible to attach such labels to a quantum mechanical systems of, say, electrons. Quantum mechanical particles are far to small to attach such physical labels and there are not enough degrees of freedom to label each particle differently. Again considering the classical case, one could imagine simply recording the position of a given particle throughout its trajectory to distinguish it from any other particle. Quantum mechanically, however, we again fail in following a single particles trajectory since each time we make a measurement of position we disturb the system of particles in some uncontrollable fashion. If the wave functions of the particles overlap at all, then the hope of following a single particles trajectory is lost. We now attempt to study the consequences of such indistinguishably between identical quantum particles.

Scattering of Identical Particles

Let's look at the case of two identical bosons (spin 0) from their center of mass frame. To describe the system, we must use a symmetrized wave function. Under the exchange , is invariant while changes sign. So the center of mass wave function is already symmetric. Furthermore, the wave function has even parity. This implies that the only possible eigenstates of angular momentum of the two particles are those with even angular momentum quantum numbers. This is evident from the property of the associated Legendre polynomials.

But we have to symmetrize by hand:

Under the transformation:

The first two terms of the symmetrized wave function represent the incident waves corresponding to the center of mass frame. Note that because we are considering identical particles we cannot distinguish the target particle from the incident one. Thus, each particle has equal amplitude of being either one.

The scattering amplitude is:

and can then be associated with the angle through which each particle is scattered. The total amplitude for particles to emerge at each angle is then exactly the sum of amplitudes for emerging at each angle, which is given above. The scattering amplitude remains consistent with the fact that we have two identical particles, and this gives us the differential cross section:

Note:

The first two terms in the differential cross section is what we would get if we had two distinguishable particles, while the third term give the quantum mechanical interference that goes along with identical particles.

As an example, consider scattering through a 90 degree angle. We then have:

Now if the particles are distinguishable, the cross section for observing a scattered particle at 90 degrees is then:

Where if the particles are indistinguishable, we see above that we will have:

Thus the differential cross-section is exactly twice the distinguishable case when the particles are indistinguishable.